
Software Tools for Technology Transfer manuscript No.

will be inserted by the editor)

Program Model Checking as a New Trend

Klaus Havelund t, Willem Visser 2

1 Kestrel Technology, NASA Ames Research Center, Moffett Field, CA 94035, USA, e-mail: havelund_email, arc. nasa. gov

2 R.IACS, NASA Ames Research Center, Moffett Field, CA 94035, USA, e-maih wvisserOemail, arc.nasa, gov

The date of receipt and acceptance will be inserted by the editor

Abstract. This paper introduces a special section of

the STTT journM containing a selection of papers that

were presented at the 7th International SPIN workshop,

Stanford, August 30- September 1, 2000. The workshop

was named SPIN Model Checking and Software Verifica-

tion, with an emphasis on model checking of programs.

The paper outlines the motivation for stressing software

verification, rather than only design and model verifi-

cation, by presenting the work done in the Automated

Software En_neering group at NASA Ames Research

Center within the last 5 years. This includes work in

software model checking, testing like technologies and

static analysis.
:F

1 Introduction

This special section contains a selection of five papers

that were amongst the 17 papers and six invited talks

and tutorials presented at the 7th International SPIN

workshop, arranged at Stanford University, California,

USA, August 30 - September 1, 2000. The original pro-

ceedings were published in Lecture Notes in Computer

Science volume 1885, Springer, titled: SPIN Model Check-

ing and Software Verification. Model checking is a tech-

nique for exploring all possible execution sequences of a

system of interacting concurrent components. Such sys-

tems may interact in unexpected ways due to unpre-

dictable speeds-of-the various components,-and-are hence

extremely difficult to test using traditional testing tech-

niques. The many ways components can interact usu-

ally leads to a large search space, and model checkers

typically incorporate various techniques for conquering

this complexity. The SPIN model checker [36], for which

Gerard Holzmann recently received the ACM Software

System Award, has a large user community, and the

SPIN workshop is a forum for this community, and gen-

erally for researchers with interest in automata-based,

explicit state model checking technologies for the analy-

sis and verification of asynchronous concurrent and dis-

tributed systems. The first SPIN workshop was held in

October 1995 in Montreal. Subsequent workshops were

held in New Brunswick (August 1996), Ensctiede (April

1997), Paris (November 1998), Trento (July 1999), and

Toulouse (September 1999).

Traditionally, the SPIN workshops present papers on

extensions and uses of SPIN. As an experiment, SPIN

2000 was broadened to have a slightly wider focus than

previous workshops in that papers on software verifica-

tion were encouraged, as reflected in the name of the

workshop: SPfN Model Checking and Software Verifica-

tion. In this paper we shall try to explain the background

for emphasizing software verification. We will do this by

outlining in the following sections some of the research

that has taken place in our own verification research

group at NASA Ames Research Center throughout the

last years since its start in 1997, together with some

thoughts on the future. The verification group is part of

the Automated Software Engineering (ASE) group, the

purpose of which is to develop software technology for

supporting software development within NASA. The se-

lected papers will be introduced and related to this work

in special subsections throughout the presentation.

By software verification we mean model checking Of

source code (or the corresponding object code it is com-

piled into). This is in contrast to analysis of designs or

models-of_software,__which-are-usually much more-ab-

stract. That is, we suggest to focus attention on the real

beast in all its complexity. Although this view at the

time of writing seems to have caught on as a popular re-

search topic, at the time leading up to the workshop, this

subject was only investigated by few research groups, in-

cluding our own. Amongst the other work in this domain

at the time was [4] and [11], and in fact only [4] was

KlausHavelund,WillemVisser:ProgramModelCheckingasaNewTrend

knownto uswhenwestarted.NowSPINhasaCinter-
face[37]andcanhencemodelcheckCprograms,and
othertoolsexistaswillbeelaboratedin latersections.

Althoughtargetingsourcecodemayappearasjust
worseningtheproblemof statespaceexplosionusually
associatedwithmodelchecking,webelievethatthereare
somebenefitsfromsuchanapproach,asweshallout-
linehere.Note,thatwedonotsuggestthat designor
modelverificationisuninteresting- farfrom.However,
ourexperiencethroughoutseveralexperimentsduring
1996and1997at NASAaswellaswitha Danishau-
clio video company lead to the (folklore) conclusion that

programmers often write code without first writing a de-

tailed design. We concluded that if formal methods were

to be adopted at NASA within a shorter time frame, we

would have to provide a technology that could analyze

real programs.

One can argue that programmers should be urged to

write formalized designs that can be analyzed. However,

a point of view may be that in order for a design to con-

tain enough information to be useful for formal analysis,

the design may approach the final system in complexity,

in which case programmers will avoid the extra work and

just write the code directly. This fact may be the reason

wh_ sqftware developers do not create detailed designs

as do engineers in other disciplines. The distance for ex-

ample between a design of a bridge, and the bridge itself,

is enormous, and therefore the design is well motivated.

In case the code is generated from the design, the design

becomes the code, and we are left with code analysis any-

way. Even a mainly graphical design language such as

UML raises the issue of program verification since UML

designs can contain code fragments, and can evolve into

fully fle}:Iged programs.

This new trend brings new challenges into focus, such

as dealing with object oriented dynamic memory alloca-

tion and garbage collection, program libraries, and, last

but not least, an increased state space to explore. These

problems require new approaches, amongst them per-

haps the most challenging being how to deal with really

big state spaces. Techniques to deal with this include

for example static analysis, abstraction, guided search,

and intelligent testing techniques in between complete

state space exploration such as model checking on the

One hand, and partial search, such as simulation on the

other. We believe that thisis an interesting research di-

rection for the formal methods community for the follow-

ing reasons. First of all, if tools can handle real programs,

the user community will increase dramatically. Second,

pro_o-ramming- languages -often offer quite convenient no-

tations for expressing solutions to problems, compared to

modelling languages. Third, by trying to handle real pro-

grams, the scalability issue becomes much more press-

Lug, and will therefore spawn new research to develop

more scalable solutions that can even help in design ver-

ification. Fourth, and finally, researchers from different

gramming language will be able to exchange examples

and compare technologies very easily.

The following sections proceed as follows. In Section

2 we describe a case study where SPIN was applied to the

analysis of a space craft controller, successfully identify-

ing several errors. This and other previous case studies

lead to the development of the Java PathFinder 1 sys-

tem: a translator from Java to the PROMELA language

of SPIN, described in Section 3. This system allows to

model check programs written in a non-trivial subset

of Java. Section 4 describes another case study where

SPIN was applied to analyze an avionic real-time oper-

ating system. Java PathFinder 1 was limited in the sense

that it could not handle the Java libraries well. Translat-

ing the libraries would give too large PROMELA models

and writing stubs for them would require an enormous

amount of work. Hence it was decided to model check

Java byte code instead, based on a homegrown Java Vir-

tual Machine. This effort is described in Section 5. Sec-

tion 6 identifies some technologies that are regarded as

essential to make model checking of software work. This

includes topics such as abstraction and search heuris-

tics. One of our more recent research topics is runtime

verification, as described in Section 7, where scalability

is achieved by just examining single execution traces.

Lastly, some final thoughts are given in Section 8.

2 The Remote Agent Example

2.1 Description of the Remote Agent

The first verification case study that was performed in

the newly created Automated Software Engineering group

at NASA Ames was the application of the SPIN model

checker to analyze part of the Remote Agent space craft

controller [29, 28]. The Remote Agent is a software sys-

tem based on artificial intelligence techniques such as

planning and scheduling. It is meant to execute on board

the space craft and it's purpose is to take over part of the

operations normally carried out on ground during the

operation of a space craft, thereby relieving ground per-

sonal from micro-managing the space craft, and instead

focus on higher level goal management. The Remote

Agent was tested on board the Deep-Space 1 space craft

during May 1999. The space craft itself was launched

on October 24, 1998. It was the first demonstration of a

complete take over of a space craft by an artificial intel-

ligence based software system in NASA's history.

_.-T--he-Remote Agent-consists essentially of three mod-

ules: a Planner, an Executive, and a Diagnosis module.

The standard operation of the space craft using this sys-

tem may proceed as follows: a goal is created by ground

personal, for example "move towards the comet and take

a picture", and up-linked to the space craft. The plan-

ner on board _Jll then from this goal generate a plan

usin__ a set of soohisticated search _orithms, based on

Ii

Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

a static predefined model of what the possible transi-

tions are relative to a current state. The result is a plan

specifying a sequence of tasks for each relevant compo-

nent on board the spacecraft, that must be performed in

succession in order to achieve the goal. Tasks from differ-

ent components may run in parallel according to certain

time constraints generated as part of the plan. The plan

is then sent to the Executive, which executes the plan,

thereby operating the space craft. The diagnosis module

constantly monitors the behavior of the craft and com-

pares the observed behavior to the expected, signaling

the executive, or in worst case the planner, if something

goes wrong, whereafter proper action can be taken to

repair the situation.

The Executive was selected for the verification case

study, and in particular the language named Esl (Exec-

utive Support Language), implemented as an extension

to multi-threaded COMMON LISP for supporting the ex-

ecution of tasks. Esl is essentially an API for multi-task

programming similar to POSIX threads, but with extra

domain specific functionality.

This would cause the executing thread to execute the

condition no_new_events (), and in case it evaluated to

true, decide to go to sleep. However, if a new event oc-

curred in between the condition and the actual call of

goto_sleep, the thread would miss the new event and

just go to sleep.

The programmer of the system was very impressed

by these results, as documented in [29]. As an interest-

ing aftermath, when the l_emote Agent was activated on

May 18, 1999, an anomaly occurred: thrusting did not

turn off as requested. The experiment was immediately

terminated from ground and put in stand-by mode for 5

hours until the reason for the error had been detected, It

turned out to be a missing critical section around a piece

of code similar the one above: but in a different part

of the system that had not been analyzed with SPIN.

One thread would then block, missing an event, and the

whole system would eventuMly deadlock. We had hence

demonstrated to NASA that model checking successfully

can find errors that can damage a mission.

2.3 Lessons Learned

2.2 Model Checking

The [sl module consisted of approximately 3000 lines

of code. Initially we had a choice between various possi-

ble verification tools, mainly theorem provers and model

checkers. We quickly decided that theorem proving would

be too time consuming for an experiment limited to a

couple of months of duration, and our goM was to find

errors, and not to prove complete correctness. We de-

cided to use SPIN since it already had a programming

language like syntax and since it allowed dynamic pro-

cess creation, one of the features of the system.

From the 3000 lines of LISP code we extracted ap-

proximately 500 lines of PROMELA code, represent-

ing an abstraction of the original system. The abstrac-

tion was made based on informal reasoning, focusing

attention on a lock table that all threads were access-

ing. By asking engineers, two properties were formu-

lated in SPIN's Linear Temporal Logic (LTL) and ver-

ified against the model. Neither of the two properties

turned out to be satisfied by the model, and a total of 4

classical concurrency errors were revealed, each of which

had a counterpart in the originalcode, as confirmed by

the programmer. They were classical concurrency errors

in the sense that they could occur due to totally unex-

pected interleavings of tasks, interleavings that had not

-been-detected by traditional testing. As an example, one

of these violations was caused by a missing critical sec-

tion around a piece of code of the form:

if (no_new_events ())

goto_s!eep ()

The experiment was regarded as successful by all in-

volved parties. Not only had 4 errors been found that

were very hard to find with normal testing, one of these

actually also demonstrated a major design flaw in the

system. Furthermore, one of the errors was later rein-

troduced in another sibling module, causing deadlock

during flight that put the space-craft in stand-by mode

for several hours.

However, observing the verification process, the re-

sult was not so encouraging. Twelve man-weeks (two re-

searchers during 6 weeks) were spent on creating the 500

Iine PROMELA model from the 3000 lines of LISP code.

The LISP code was undocumented and used many layers

of macros, which made it difficult to read. Just under-

standing the code in order to make a proper translation

was definitely one of the problems. A second problem

was to define the mapping from the very powerful LISP

language to the less powerful PROMELA language. A

thir d problem was to decide what parts to translate and

for those parts, whether the translation should be one-to-

one, or some abstraction. It was clear to us that the first

two problems (understanding and translation) were the

hardest, while the abstraction problem strangely enough

was less of a problem. This gave us the hope that if

the translation could be automated, and the verification

was performed by the programmer himself, using some

kin&of semi-automated abstraction support tool_ then

the experiment could potentially have been done _ithin

a single day.

Another important source of experience supporting

the construction of a software model checker was the ap-

piication of the UPPAAL real-time model checker [39 l

to analyze two audio video systems developed by the

Da._Jsh audio video comoanv Ban__ &c Olufsen !26.25J.

KlausHavelund,WillemVisser:ProgramModelCheckingasaNewTrend

Theverificationeffortwasverysuccessfulinoneoccasion
([26])in thata10yearoldknown,butunexplained,bug
wasfoundandexplained.However,aswasthecasewith
theRemoteAgentstudy,sometimewasspentonmanu-
allycreatingamodelfromtheprogram,inonecase2500
linesofassemblercode.Asaresultoftheseexperiences
wedecidedto createa translatorfroma programming
languageto PROMELA,asdescribedin thenextsec-
tion.Thefirst ideaof developingaJavamodelchecker
wasin factconceivedduringtheworkwithUPPAALin
1997.

3 JavaPathFinder1

3.1 Rationale

As outlined in the previous section, a series of experi-

ments with applying existing model checkers in the mod-

elling and analysis of software systems had lead to the

observation that it would be extremely useful if model

checkers could analyze programs written in traditional

programming languages. We therefore decided to de-

velop a model checker for some well chosen programming

language, and the choice felt on Java.

There are several objective reasons for choosing Java.

First, it was viewed as important that the chosen lan-

guage was object oriented since that was the current

trend in programming language design. Second, the lan-

guage should Mso be popular in order to gain a broader

user community. These criteria ruled out C (not object

oriented) and LISP (not popular). C++ was regarded as

too complicated for formal analysis due to its rich syn-

tax and capabilities for operating with pointers. Java was

hence the obvious choice for the above reasons. However,

NASA currently operates mostly in C, and in some cases

in C++. LISP was only used for the Remote Agent ex-

periment and has been abandoned for future missions.

This gave us the burden of arguing going for Java. Our

response would be that Java would be good for proto-

typing the ideas, and potentially Java could become the

language of the future. As it turns out, experiments are

currently undertaken within NASA to evaluate Java as

a possible replacement of C and C++. The occurrence

of Real-Time Java may have an important role to play

in this decision.

The development of a model checker for Java could

again take a number of avenues. One could either write a

model checker from scratch for Java, or write a translator

from-Java to-the modelling language of some exdsting

model checker. The SPIN model checker was early on

regarded as either the target for a translation, or at least

an example of how one could write a new model checker

for a programming language. The PROM-ELA language

has a high resemblance to a programming language. One

of the salient features of PROMELA is the capability of

dynamic orocess creation. _re ear!v on Lmagined that

this could be used to model dynamic thread creation as

existing in Java.

It was finally decided to write a translator from Java

to PROMELA, the modelling language for SPIN, since it

would potentially require less work than writing a model

checker from scratch. The project was named Java

PathFinder (JPF) [30], later to be named Java PathFinder

! (JPF1), after the Mars PathFinder rover that explored

Mars in 1997. The goal was to produce a prototype rel-

atively fast in order to evaluate the potential of model

checking real programs. At the time, only a source-to-

source code translation was considered. Java source code

is compiled into byte code by the compiler, and hence an

alternative approach would have been to translate byte

code to PROMELA. This latter approach was, however,

hardly considered at the time, possibly reflecting a belief

that byte code verification would be too inefficient with

too many detailed inter]eavings between single byte code

instructions. As it turned out, as described in Section 5,

when we later concluded lessons learned from the JPF1

project, byte code verification actually turned out to be

a very viable solution.

3.2 Design and Implementation

JPFI translates a Java program into a PROMELA model.

The Java program can contain assertions as calls to an

asser¢ method, which will be translated into calls of

PROMELA's assert statement. The resulting PRO MELA

model can then be checked for assertion violations and

deadlocks. There is also a possibility, of course, to check

general LTL formulae on the resulting PROMELA model,

although this requires some minimal knowledge about

the generated PROMELA code. Error traces produced

by SPEW are visualized using SPIN's message sequence

charts, assuming that special print statements have been

inserted into the code. JPFI does not apply any analysis

to reduce the state space of the generated model. Hence,

the Java program must have a finite and tractable state

space.

The translator is developed in LISP, and comprises

6000 lines of code. \¥e have used an already existing

parser front-end written in Moscow-ML by Peter Ses-

toft (the Royal Veterinary and Agricultural University in

Denmark), ported from a Standard-ML version written

by Olivier Brunet and Gbrdon Woodhull (University Of

California, Berkeley, USA)- The parser handles Java 1.0,

an early version of Java. As a result, the translator trans-

lates a subset of Java I=0: However, a-si_ificant Subset- of

java 1.0 is supported by JPFI. This includes: class def-

initions with class variables, fields and methods; simple

data types such as integers, booleans, object references

and arrays of aLl these types; class inheritance; dynamic

object creation; threads and synchronization primitives

such as synchronized statements and the wait and

notify methods; exceptions and thread interrupts; and

i-

t

Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

finally most of the standard programming language con-

structs such as assig-nment statements, conditional state-

ments and loops. Amongst the features not translated

are: packages (the parser could only read one package),

overloading, method overriding, recursion (since method

calls are translated by inlining), strings, floating point

numbers, some thread operations like suspend and resume,

and some control constructs, such as the continue state-

ment. Furthermore, arrays are not objects as in Java

since they are modelled using PROMELA's own arrays

to obtain an efficient verification. Finally, but perhaps

most importantly, the translator can not translate the

pre-defined class library, including for example numer-

ous container classes. In spite of these omissions, JPFI

at the time translated more of Java than any to us known

other similar tool.

A key desi_m issue was how to translate dynamic

object creation. Dynamic object creation is handled by

for each class to define an array of fixed size, each en-

try of which corresponds to the data area of the class.

Hence, for example if a class has two variables x and y,

then an array of records containing these two variables

is generated. The size of the array sets a limit on how

many objects of the class can be generated, and must

be re-defined by the user if the default value is not sat-

isfactory. An index variable always points to the next

free object. An object reference is a pair consisting of

the name of the class and an index variable pointing

into the corresponding array. Another key issue was the

translation of dynamic thread creation and the various

thread synchronization constructs. Threads are natu-

rally mapped to PROMELA processes. The key synchro-

nization constructs, such as the synchronized methods,

the synchronized statement, and wait and notify, are

handled by introducing extra variables in the data area

for each object (in the array corresponding to the class).

For example, locking an object is modelled by intro-

ducing a LOCK variable, which by default contains null,

and which is assigned the thread id of any thread lock-

ing the object. Another thread cannot access the ob-

ject in case this variable differs from null. Similarly,

a PROMELA zero-capacity (synchronous) channel vari-

able is introduced to model the wait and notify opera-

tions: waiting corresponds to executing a "?" operation

on the channel and a notification corresponds to execut-

ing a "P'. A major feature of the translator is that it

can handle exceptions and the finally construct. Ex-

ceptions are translated by using the unless construct

of PROMELA I A special variable EXN is introduced in

each_thr.ead object, holding the default null value. An

exception (which is an object in Ja%-a) is thrown by stor-

Lug the exception object into this variable, which again

triggers the surrounding unless-constructs, which are of

the form P unless EXN != null.

I Gerard Holzmann introduceda special-J (forJava)optionin
SPIN tointerpretunless frominside-outratherthanfromoutside-

3.3 Lessons Learned

JPF1 was considered a successful tool, achieving atten-

tion from various research groups. The tool was applied

to a game server consisting of 1400 lines of Java code in

t6 classes [34]. Although the example was not very big, it

was non-trivial, and not written with formal verification

in mind. A suspicion about a deadlock in the system was

confirmed using JPF1. The tool was also applied to an-

alyze the Remote Agent after it deadlocked in space, as

described in [28]. In this case the space craft engineers at

JPL in Los Angeles informed us that a deadlock had oc-

curred and challenged us if we could find the error using

model checking. We did find the error, however discov-

ering it though code review since we had seen it before

as described in Section 2. However, JPF1 was used to

confirm that it was an error.

It was clearly felt that smaller Java programs of up

to 2000 lines of code could be handled with this kind

of technology 2. This could either mean that the tech-

nolog-y was well suited for unit testing, or perhaps for

testing even larger systems using abstraction before the

application of the tool. However, the tool itself had some

drawbacks concerning its applicability. As described ear-

lier, although a considerable subset of Java was trans-

lated, not all was translated, and in particular not the

pre-defined Java library. It was regarded as impractical

to translate the library, using JPFI (even if we had the

sources). Hence, a program would have to be modified in

order to fit the well-formedness criteria of the translator

if it used the library, and most Java programs do. Also,

there were other translation omissions, such as recursion,

that seemed hard to capture considering the then exist-

ing translation framework. In general, it was the percep-

tion that the closer one got to cover 100% of Java, the

harder it became to extend the translator. As it turned

out, working at the byte code level would solve all these

problems, without costing a big loss of efficiency.

4 The DEOS Case Study

In 1998 Honeywell Technology Center approached the

ASE group with a request to investigate techniques that

would be able to uncover errors that testing is not well

suited to catch [43 I. The next generation of avionics plat-

forms will shift from federated system architectures to

Integrated Modular Avionics (]]VIA) where all the soft-

war e_r_u_ns on a single _c_omputer with an op_erating sys-

tem ensuring time and space partitioning bet_veen the

different profiesses. For certification of critical flight soft-

ware the FAA requires that software testing achieves

100% coverage with a structural coverage measure called

2 Evidently, the complexity of a program cannot be purely mea-

sured in terms of lines of code, but rather one has to consider the

m,,:nt a,f ':_terle_:_":ng ,_n_b]_ ,l_a_'een thraada

Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

Modified Condition/Decision Coverage (MC/DC). Hon-

eywell was concerned that 100% structural coverage would

not be able to ensure that behavioral properties like

time-partitioning will be satisfied. In particular, they

developed a real-time operating system, called DEOS,

where an error in the time partitioning of the O/S was

not uncovered by testing. As an experiment the ASE

_oup undertook the challenge of finding this error with

a model checker without knowing what it was, where it

was, or even, how to check for it. In a kick-off meeting

Honeywell visited the ASE group and discussed the ba-

sic functionality of DEOS, and subsequently produced a

slice of the O/S that contained all the code required to

show the error. The code that was analyzed was 1500

lines of C++ code (full DEOS is 10000 lines of code).

Since we didn't have a model checker that could take

C++ as input we were forced to again translate the code

to a suitable model checker's input notation. However,

unlike with the Remote Agent we decided to do a me-

thodical I-to-1 mapping between the code and the model

checker input, so that we could avoid first understand-

ing all of the program. We again chose the SPIN model

checker since the PROMELA language was the closest

model checker input to a real pro_amming language,

like C++. The translation scheme we used was based on

the Java PathFinder 1 approach for dealing with object

oriented programs (see Section 3).

The error was found in 3 man-months work: divided

between 1 man-month translating the C++ code to

PROMELA and 2 man-months finding the error. In the

Remote Agent case it took 3 man-months to translate

the code, and two man-weeks to do the analysis. This

difference can easily be explained by the differences in

the two systems: one system was nearing the end of its

design cycle, written to be certified, tested thoroughly

and contained only one very subtle error (DEOS), the

other was in the middle of its development cycle, written

in a semi-research environment, tested by the developers

and contained a number o.f errors (Remote Agent).

The analysis of the DEOS system was very well re-

ceived by Honeywell and subsequently the DEOS system

became the focus of a number of research efforts [43,50,

17]. Honeywell proceeded in creating their own model

checking team to analyze future DEOS enhancements as

well as the applications to run on top of DEOS [7]. Hon-

eyweU is continuing to extend the DEOS PROMELA

model to support verification of more complex versions

of DEOS.

_.1 Lessons Learned

From a research perspective the work on DEOS validated

our hypothesis that real programs can be analyzed di-

rectly, however DEOS also showed us some other prob-

- Model checking programs directly shifts the burden

of work from the translation of the code to the model

checker's input to the analysis of the code.

- Typically the translation from code to model checker

involves some ad-hoc abstraction and slicing of

the code, that makes the model checking more

efficient.

- When this translation is done 1-to-1 it means

much of this clever encoding that was previously

done by the human translator now needs to be

done by clever tools with minimal human input.

- Creating an environment for the program to execute

in during model checking can be very challenging

- Model checkers can only analyze closed systems

hence any system to be analyzed must be supplied

with an environment to drive it. This is analogous

to creating a test-driver and selecting test cases

to support testing.

- Creating an environment for DEOS to show the

error occurring took the most time in the DEOS

model checking (2 man-months).

4.2 Related Paper in this Special Section

Traditionally the SPIN workshop has had a strong focus

on the use of SPIN in reaPworld case studies - similar to

the DEOS case study described here. In keeping with this

tradition the paper by Brinksma, Mader and Fahnkar,

entitled Verification and Optimization of a PLC Con-

trol Schedule describes the use of SPIN (as well as UP-

PA_AL [39]) for the analysis of a programmable logic con-

troller system. What makes this contribution novel is

that firstly the PLC controller is a real-time system and

SPKN doesn't support real-time directly (the paper also

describes a comparison study with UPPAAL that does

support real-time), and secondly, that not only correct-

ness properties of the controller are considered but also

optimization issues in the use of the controller. One of

the contributions of this paper is the use of variable time

advance for handling real-time in SPIN, we adopted this

approach also in the analysis of DEOS.

5 Java PathFinder 2

5.1 Rationale

As pointed out in Section 3 the Java Pathfinder 1 (JPF1)

model checker was highly successful, but had a num-

ber-of-drawbacks that limited its effectiveness: Essen-

tially the main reason for this was the translation based

approach adopted: although SPIN is a very powerful

model checker and the PROMELA language very expres-

sive, the mapping between Java and PROMELA is not

straight forward. Java Path_Finder 2 (henceforth JPF2)

was developed to address the shortcomings of JPF1 (see

Section 3] :

4

i [

F
i

Klaus Havelund, Willem Visser: Program Model Checking as a New" Trend

I. Handle Ml the language features of Java

2. Handle Java libraries

3. Allow more flexible approaches to model checking

Java programs

The major design decision for JPF2 was to base it on

a custom-made Java Virtual Machine (JVM) that could

execute all Java bytecodes. This addressed issues I and 2

from above, since all of Java could now be model checked

and also all Java libraries. We addressed the third issue

by designing JPF2 in a modular fashion in order to allow

many different search strategies to be easily integrated

into the model checker.

A number of different research groups have worked on

Java model checkers, but most of these have been based

on the translation approach as used for JPFI [Ii,9]. To

date, JPF2 is still the only model checker that can handle

all the language features of Java. The only other custom-

made model checkers that address real programming lan-

guages are, dSPIN [12] an extension of SPIN that can

handle dynamic memory creation and functions, the new

version of SPIN that can handle a subset of C, and the

SLAM model checker [I] that checks teachability prop-

erties of sequential C programs.

5.2 Design and Implementation

JPF2 is written in Java Which made the development of

a custom-made JVM quite easy - one could exploit the

fact that we were doing "Java-in-Java" by allowing the

underlying JVM to handle the implementation of some

of the tricky bytecodes such as floating point division

(FDIV). We believe that since we wrote JPF2 in Java,

it contributed to the fact that a prototype system that

had similar functionality as JPF1, was completed in only

3 man-months.

JPF2 is an explicit-state model checker which means

it enumerates each reachable system state from the ini-

tim state and in order to not redo work (and therefore

terminate) it is required to store each reached state.

When analyzing a Java program each state can be very

large and thus require much memory to store, hence re-

ducing the size of systems that can be handled during

model checking. This was the fundamental problem that

had to be solved for JPF2 to work. Others considered

this problem too hard and developed so-cMied state-less

model checkers (i.e. they don't store states and there-

fore do a partial state-space search) [20]. In JPF2 this

problem is solved by using novel state-compression tech-

niques [41] that reduce the memory requirements of the

model-checker by am order of magnitude:- Another novel

feature of JPF2 is the use of symmetry reduction tech-

niques to allow" states that are the same modulo where

an object is stored in memory to be considered equal

[41]. Since, object-oriented programs typically make use

of many objects, this symmetry reduction often allows

an order of magnitude less states to be analyzed in a

JPF2 uses the BANDERA [9] toolset for specifying

the properties to be analyzed, the display of the error-

path if one exists, as well as for certain forms of abstrac-

tions and slicing. BA_NDERA supports the specffication

of predicates within Javadoc comments that can be used

to check linear temporal logic (LTL) behavioral proper-

ties as well as pre- and postconditions for methods. To

handle LTL properties JPF2 has a front-end translator

from LTL to Biichi-antomata [19] that is highly opti-

mized to produce succinct automata. The JPF2 model

checking algorithm then checks whether all program be-

haviors comply with the behaviors described by the au-

tomata, using a highly optimized algorithm based on the

work presented in [51].

JPF2 also supports distributed memory model check-

ing, where the memory required for model checking is

distributed over a number of workstations [41]. Although

this technique requires an additional time-overhead due

to the sending of messages over a network, it allows ex-

amples to be analyzed that previously would not fit in

the memory of one workstation. The crucial factor for

the success of distributed model checking in this fash-

ion is how to partition the memory across the different

workstations -- in [41] we investigated a number of par-

titioning schemes and found that dynamic partitioning

(partitions evolve during model checking rather than be-

ing statically fixed at initialization) worked best.

5.3 Lessons Learned

JPF2 has been successfully used in a number of projects,

most notably the DEOS error (from Section 4) was redis-

covered in a Java translation of the original code. More

recently, 7000 lines of code from a Mars rover was suc-

cessfully analyzed. The JPF2 system was made available

. to the user community via a web download in Febru-

ary 2001 and since then more than I00 organizations

have registered to use the tool. More importantly, JPF2

has had the desired effect of becoming a vehicle for re-

search on analyzing programs with model checking: we

have close collaborations with the BANDERA group at

Kansas State University as well as other groups at CMU,

Stony Brook, Minnesota, Freiburg and Liverpool Univer-

sities.

The development of JPF2 was the culmination of 3

years of research in the application of model checking to

software within the ASE group. In many ways however it

is the stepping stone for the future: instead of wor_-ing

about how to encode a program in some model checking

notation, one can rather think of the behavioral proper-

ties one would like to check, which parts of the progTam

to abstract to make the model checking more tractable,

and how to improve model chec_'rS-ng for specific classes

of programs. These issues -,/11 all be discussed in the

KlausHavelund,WillemVisser:Proo_ramModelCheckingasaNew_l_end

5._ Related Papers in this Special Section

As mentioned in Section 5.2 JPF2 supports LTL modeI

checking through the use of the BANDERA toolset to

describe the properties to be checked on the Java pro-

grams. In this special section the language for describing

these properties, namely the BANDERA Specification

Language (BSL), is outlined in detail in the paper by

Corbett, Dwyer, Hatcllff and Robby, entitled Express-

ing Checkable Properties of Dynamic Systems: the BAN-

DERA Specification Language. The BSL language has

recently been fully inte_ated with JPF2.

An important component of explicit-state model check-

ing is how to check temporal properties efficiently. JPF2,

as well as SPIN, uses the so-called automata-theoretical

approach where each LTL (linear time temporal logic)

formula is translated to a Biichi automaton before model

checking commences. This translation from LTL to Biichi

automata has been the focus of much research, and a

number of tools for doing such a translation exist (in-

cluding the one used in JPF2 [19]). However, doing this

translation efficiently is non-trivial and therefore also

error-prone. The second paper, by Heikki Tauriainen and

Keijo Heljanko, entitled Testing LTL Formula Transla-

tion into Biichi Automata, deals with this, somewhat

overlooked, area of the correctness of LTL to Bfichi trans-

lators. We will soon by relying on their technique also to

the test the LTL to Bfichi translator used within JPF2.

6 Technologies for Software Model Checking

For model checking to make an impact on the quality of

programs produced the amount of human effort in oper-

ating the tools should be kept to a minimum. With JPF2

we have reduced the amount of effort considerably since

a translation phase is no longer required. However, be-

cause the automated translation preserves all the details

of the software implementation, the model checking itself

is more difficult. The reason is that manual translation,

typically involves significant optimization and abstrac-

tion of the system. Therefore, to truly reduce the amount

of manual effort and place model checking into the de-

velopment loop, we need tools to support the typical

optimizations and abstractions previously done during

translation. In general, the goal is to reduce the_state-

space of the system that the model checker needs to an-

alyze, providing both scalability and responsiveness.

6.1 Abstraction

_rhen using abstraction techniques to reduce the number

of states of a system one can either remove some behav-

iors present in the original system (render-approximations)

or introduce new behaviors not present in the orignal

6.1.1 Under-approximations

Under-approximation of the behaviors is by far the most

common form of manual abstraction before model check-

ing. Under-approximation doesn't preserve correctness,

i.e. if the abstract system satisfies a behavioral property

then it doesn't follow that the original system does as

well. Under-approximation are however good for find-

ing errors, since an error in the abstract system implies

the same error in the original [50]. JPF2 was built with

the view that it should cover the spectrum of analysis

techniques from testing, where only one execution of a

program is analyzed, to model checking where all the

paths are analyzed, hence JPF2 supports a number of

techniques for doing under-approximations during model

checking (we highlight two below).

Race-Guided - where a race-analysis is done on the pro-

gram first and if a race violation is found the model

checker focuses on the threads involved to see what

the race violation might lead to. We used this tech-

nique to find the error in the Java translation of the

Remote Agent error that occurred during flight [52].

Heuristic Search - using techniques from AI we can ap-

ply either general or program specific heuristics to

guide the search towards likely errors. For example

to find deadlocks we use a heuristic that tries to

maximize blocked threads - this heuristic found the

Remote Agent deadlock within seconds whereas in

exhaustive mode the model checker will fail due to

memory Iimitations. We also developed a heuristic for

finding problems that are due to thread-interleaving

and lastly, one based on trying to increase structural

testing coverage [22]

6.1.2 Over-approximations

With this technique one represents a group of states in

the concrete (original) program by a small finite set of

states in the abstract program -- and can therefore lead

to huge state-space reductions. This form of abstrac-

tion is inspired by abstract interpretation as first used

in static program analysis [10], where the data domain

(type) of a variable is replaced by an abstract type over
which all concrete operations are then interpreted. Note

that this type of abstraction causes more behaviors to be

present in the abstract program than in the original pro-

g-ram. The fact that more behaviors are possible in the

abstract program means that if a behavioral property ex-

pressed-in- LTL holds in the abstract-it-also-holds-in-the

concrete, but ff an LTL property fails in the abstract

then it might not fail in the concrete (since it might

fail due to a behavior found in the abstract that is not

present in ;he, concrete). Another very popular form of

over-approximations is called predicate abstraction [21,

1J: here one replaces a predicate used in the prog-ram
1_ _ _nnl_n vnr_n.hlo nnd _,ll lmdates to the variables

I/

Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

in the predicate are changed to updates of the boolean

variable.

JPF2 supports predicate [50] and BANDERA sup-

ports type-based abstraction [17]. In order to handle

over-approximations of the program behaviors we have

extended Java with two special method calls that signals

nondeterministic choice (random(n) that return values

between 0 and n inclusive and randomBool0 that re-

turn true or false) -- whenever the model checker en-

counters these methods it will nondeterministicalty try

all possible results for each call.

Predicate Selection The first problem one encoun-

ters with the application of over-approximations in prac-

tice is how to select the parts of the program to abstract

-- typically this requires human intervention. In BAN-

DERA type-based abstraction can be done automati-

cally though, by doing a backward dependency analysis

of the program from atl points that dL_ectly influence the

temporal property to be checked, to determine a set of

variables that most influence program behavior (with re-

spect to the property to be checked) and these variables

then become candidates for abstraction [17]. Although

predicate abstraction can be applied automatically too,

by selecting all predicates in the program and in the

property, we have found that in practice this leads to too

many spurious counter-examples (i.e. too many behav-

iors not present in the original that then lead properW

violations).

Abstract Program Creation Both predicate and

type-based abstraction can be applied either during or

before model checking. However in practice, the calcu-

lations required to determine the abstract state of a

program is too slow to be done during model checking,

and therefore we only use abstract program creation be-

fore model checking in JPF2 and BANDERA. In order

to cMculate an abstract operation, given an abstraction

mapping (type or predicate) and a concrete operation,

one requires an automated theorem prover (i.e. a set of

decision procedures for the domain). For predicate ab-

straction we use the Stanford Validity Checker (SVC)

[2] to calculate abstract statements and for type-based

abstraction BANDERA uses PVS [42]. Although most

of the abstraction calculations are done before model

checking, object-oriented programs are particularly chal-

lenging for predicate abstraction, since predicates may

relate variables from different classes that during exe-

cution can have a number of instantiations. Predicate

abstraction is typically done in a static setting, whereas

with object-oriented programs predicates can be created

dynamical_ly durmg-execution when new objects are in-

stantiated. JPF2 therefore supports mechanism to allow

predicates to be created on-the-fly during model check-

ing when predicates are specified across different classes

[5O].

Result Interpretation The biggest drawback of

over-approximation based abstractions are that errors

The more aggressive the abstraction, i.e. the bigger state-

space reduction one achieves, the more likely it will be

that a spurious error will occur. It is a well known fact

that users of systems where spurious errors can be re-

ported are more Iikely to complain about the spurious

errors than if it reported no errors (supported by data

presented by Microsoft after using their static analysis

tool PREfix for discovering run-time errors [49]). For a

program model checker using abstraction to be of prac-

tical use it is therefore vitally important that spurious

errors be eliminated. JPF2 supports a novel technique

for achieving this goal: as a first-pass after abstraction it

only searches the parts of the abstract program's state-

space that it knows contains no behaviors that are not

also part of the concrete program [47]. One can view

this as doing a on-the-fly under-approximation of the

state-space generated from doing an over-approximation

of the original program. This technique has been remark-

ably successful: both the Remote Agent and DEOS ex-

amples' bugs can be found using abstraction and this

search technique.
Abstraction Refinement An abstraction can be

too coarse in certain situations, i.e. a spurious error can-

not be removed unless the abstraction is refined. JPF2

supports a very practical approach to determining where

a refinement is necessary: the path reported by JPF2

as a counter-example over the abstract program is exe-

cuted over the concrete and where the path diverges (if

it doesn't diverge then of course the abstract path is not

spurious) the predicates at that point are likely candi-

dates to refine the abstraction. Refinement then proceeds

by adding these predicates to the predicate abstraction

and repeating the abstract program creation. This ap-

proach was first demonstrated in :he Invest tool [3].

6.2 Slicing

Slicing is a technique that yields a precise abstraction

(neither over nor under approximation) of the program

behavior with respect to the property being analyzed

[14]. A sliced program yields a smaller state space than

the original un-sliced program, and hence, slicing allows

the model checker to handle larger programs. There are

two important aspects to selecting statements that will

be eliminated. First, these statements should not appear

on the dependence graphs of the statements containing

variables that are terms of the property being checked.

Second, the sliced program should still be executable

(since JPF2 is an explicit-state model checker). Slicing

in JPF2 is pro_dded through the slicing capability of_he

BA1VDERA tooiset [9]. In BANDEI:Li, slicing is per-

formed based on six types of dependencies [24]: three

intra-thread dependencies which are usually found in se-

quential programs, namely data, control and divergence

dependencies and three types of dependencies (interfer-

ence, synchronization, and ready dependencies) that cap-

10 KlausHavelund,WillemVisser:ProgramModelCheckingasaNewTrend

6.3 Partial-Order Reduction

The goal of p_rtial order reduction is to exploit the com-

mutativity of concurrent transitions to reduce the state

space that needs to be explored by a model checker. This

technique, which is well described in [hJ, relies on the

concept of independent transitions. Two transitions are

independent ff the execution of one does not disable the

other (and vice versa) (enabledness condition) and they

result in the same state regardless of their execution or-

der (commutativity condition). JPF2 relies on a stronger

concept based on safe transitions [38]. In essence, a tran-

sition is safe if it is independent on any transition of any

other thread. A partial order reduction scheme that se-

lects only safe transitions, when some exist, for explo-

ration is guaranteed to yield correct results.

From a static analysis point of view, identifying safe

statements can be reduced to the problem of identifying

objects that can escape the thread where they have been

created. Indeed, if we can identify such objects we can

identify objects that can be shared by different threads.

Then, unsafe statements are those that access shared

objects, as well as those that correspond to entering a

monitor in Java (these ones are easily identifiable syntac-

tically). Our "safe statement" analysis is essentially an

aliasing analysis. In a first phase, we build the program

call graphs associated with each thread. As we build

these graphs, we identify some escaping objects (they

are passed as arguments to the class constructor of the

thread). It is easy to realize that all other escaping ob-

jects are aliased to the escaping objects identified in the

first phase. Therefore, the second phase consists of an

aliasing analysis. Note that we do not have to compute

aliases created by considering all interleavings (which is

quite costly). Indeed, all escaping objects are identified

by computing "intra-thread" aliases. This means that

the complexity of our analysis is similar to the complex-

ity of an aliasing analysis for sequentiM programs.

6.g Environment Generation

An explicit-state model checker, such as JPF2, requires

a closed system to analyze, i.e. a system and the envi-

ronment it needs to operate in must be provided before

model checking [16]. Often, however, the environment is

not available and it needs to be created -- during testing

an analogous problem exists when a test-harness must be

created, however a few subtle but important differences

exist... For model checking it is important that all rele-

vant environment behavior be present, whereas in testing

a subset of all possible test-cases will be tested. Know-

ing which environment actions are relevant is however

only possible with domain knowledge, something not al-

ways possible if the domain experts are not involved in

the model checking (as is almost always the case in a

A common approach favored during model checking

of systems without a known environment is to create the

most aggressive environment, i.e. one that can perform

any legal action at any possible time -- often referred

to as the universal environment [15]. If a property holds

for a system composed with its most aggressive environ-

ment then the system will be correct when used in any

environment. This is similar to the case where an over-

approximation is done during abstraction. Unfortunately

it also has the same problem as over-approximation in

abstraction: spurious errors may result since the uni-

versal environment allows behaviors for which the sys-

tem was not designed. A novel approach to remove such

spurious behaviors is by filtering unwanted behaviors

from the environment using LTL properties augmented

with filter properties [15]. This technique was success-

fully used to create the DEOS system's environment [46]

in only a few days rather than the 2 months used creat-

ing the environment manually.

5. 5 Related Papers in this Special Section

Two of the papers in this special section are related to

JPF2 as well as the state-space reduction techniques de-

scribed in this section.

Firstly, the paper by Scott Stoller entitled Model-

Checking Multi-Threaded Distributed Java Programs ex-

ploits the specific thread synchronization facilities in Java

to optimize model checking by improving partial-order

reductions (see Section 6.3). This work is illustrated within

the context of doing state-less model checking (see Sec-

tion 5.2) and is also implemented within JPF2.

Curbing the omnipresent state-explosion problem has

been a fruitful line of research within the SPIN com-

munity as well as the model checking field in general.

One popular technique for combating the state-explosion

problem, not highlighted in this section, is to exploit

symmetry reductions within the system that is being an-

alyzed. The paper by Bosnacki, Dams and Holenderski,

entitled Symmetric SPIN, introduces a symmetry reduc-

tion package for SPIN. The significance of this work lies

not only in the theoretical contributions, but also in the

fact that the research ideas were implemented within

SPIN and is supported by empirical data. As mentioned

in Section 5.2 JPF2 also supports symmetry reductions,

but only for the objects instantiated within the Java pro-

gram, whereas this work also handles symmetries in the

process structure.

7 Java Path.Explorer

7.1 Rationale

Since the Ja_ PathFinder attempts to explore the en-

tire state soace of a java pro_a_m._, storing the states

!!,

Klaus Havelund, Willem Visser: Program Model Checking as a New Trend
11

explicitly, it naturally suffers from the classical state

space explosion problem. For very large applications one

may therefore want to apply complementary techniques

more closely related to traditional testing. Testing can

be characterized as: "execute the program with different

test-cases and observe each execution, comparing it to

the expected behavior". Although we believe that the

area of automated test-case generation has great poten-

tial, we think that its maturity is still at least 5 years

out in the future. Also, providing a general, application

independent, framework for automated test-case gener-

ation is not obvious. Engineers at JPL, in addition, ex-

pressed scepticism that such automation could be done,

suggesting that it always at the end requires some engi-

neer to sit down and think out what the test case should

be. Our goal was to develop a technology that had a

chance of being adopted by space craft designers within

a relatively short time horizon (a couple of years). Our

interest hence was turned on the observation part of the

equation. The question was:

How much information can be extracted about a

program from observing a single execution trace?

It was our intention to develop a technology that could

be applied automatically and to large full-size applica-

tions, with minimal modification to the code. The SPIN

2000 workshop hosted two invited talks on two com-

mercial tools in .this category: Temporal Rover [13] and

Visual Threads [23]. Temporal Rover monitors the exe-

cution of a program, and checks its behavior against a

collection of temporal logic formulae written in a tempo-

ral logic. Formulae are written in the code as comments,

and then translated into formula checking code, which is

executed as assertions. Visual threads performs various

concurrency error analysis, such as deadlock and data

race analysis. In particular, it implements the Eraser al-

gorithm [48] for detecting data races. It was decided to

build a tool, Java PathExplorer (JPaX) [31-33], which

combined the functionality of these two tools, and in ad-

dition added new functionality. The Java PathExplorer

analyzes (explores) single executions traces.

Visual Threads is tightly coupled to Compaq's Alpha

microprocessors, and in addition does not work properly

on Java programs. Hence, one goal was to port some of

the technology to work for Java. The Temporal Rover

required manual instrumentation of the code. We de-

cided that automated instrumentation is desired, and

hence-focused on-providing-that capability, In Temporal

Rover one can for example state a property over a set of

program variables. One then has to insert the property

at each update of these variables manually. W'ith auto-

mated instrumentation capability, the property checks

will be inserted automatically at all updates. This work

was also inspired by the MAC tool [40], which performs
_, 1]'t'nm n t _,,4 -i'm _t rl 1 m _'n h n t'_ n'n

7.2 Design and Implementation

Two kinds of event analysis are currently implemented.

Logic based monitoring consists of runtime checking

formal requirement specifications written in high level

logics by users of the system. Logics are currently imple-

mented in Maude [6], a high-performance system sup-

porting both rewriting logic and membership equational

logic. One can naturally and easily define new logics

in Maude, such as for example temporal logics [44], to-

gether with their finite trace operational semantics. Cur-

rently, JPaX supports two built-in logics, future time

and past time linear temporal logic.

Error pattern analysis consists of analyzing one ex-

ecution trace using various error detection algorithms

that can identify error-prone programming practices that

may potentially lead to errors in some executions. Two

such algorithms focusing on concurrency errors have been

implemented in JPaX, one for deadlocks and the other

for data races: the Eraser algorithm [48]. It is important

to note, that a deadlock or data race potential does not

need to actually occur in order for its potential to be de-

tected with these algorithms. This is what makes them

very useful in practice. As an example, the deadlock algo-

rithm works by building a graph of locks acquired during

the execution, building a edge from a lock L1 to a lock

L2 if some thread T holds L1 while acquiring L2. The

lock graph accumulates all such updates and a warning

is issued if it eventually becomes cyclic.

An instrumentation module performs a script-driven

automated instrumentation of the program to be ob-

served. The instrumented program, when run, will emit

relevant events to an observer, potentially running on a

different computer, in which case the events are trans-

mitted over a socket. The Java byte code instrumenta-

tion is performed using the powerful Jtrek Java byte code

engineering tool [8] from Compaq. Jtrek makes it possi-

ble to easily read Java class files (byte code files), and

traverse them as abstract syntax trees while examining

their contents, and insert new code.

7.3 Lessons Learned

At the time of writing, PathExplorer is being applied

to a couple of case studies at NASA Ames, with so far

promising results. Deadlocks and data races have for ex-

ample been located. Deadlock and data race analysis,

however, is limited, evidently, to only that kind of errors.

So-although the technology is-powerful.,--it onl3_-covers a

smaller fraction of the errors usually contained in soft-

ware. Temporal logic monitoring can be used to check a

broader class of errors, although in this case an error has

to actually occur in order to be detected. Runtime moni-

toring can potentially be combined with model checking,

for example as described in our paper in the SPIN 2000

_rncee_i._ [_7].Here _.ead]ock and data race analysis

12 KlausHavelund,WillemVisser:ProgramModelChecking as a New Trend

has been integrated into the Java PathFinder tool in

such a way that one can first run the tool in simulation

mode where deadlock and data race potentials are de-

tected in a very scalable manner, whereafter the model

checker is started to focus in on the threads involved in

the warnings. A major issue that current case studies

demonstrate is that it is difficult for software engineers

to generate requirements that a software system should

satisfy, even in English. Hence, it is interesting that for-

mallzing the properties, once provided informally, is not

the main problem.

8 Summary

In the previous sections we tried to give a flavor of the re-

search within the Automated Software Engineering group

at NASA Ames, that led to the decision to focus the

7th SPIN Workshop on model checking software. The

sections related to the different research activities de-

scribed were given in a roughly chronological order of

when the work started. The concept of the workshop

was formulated in late 1999, which would place it some-

where in the early stages of the JPF2 (Section 5) and

Java PathExplorer (Section 7) development. These two

projects as well as the work on supplementary technolo-

gies for model checking (Section 6) are very much still

ongoing.
A number of other projects (in the ASE group) in

the general field of software verification and validation

have started since the SPIN 2000 workshop, but since

these are not directly related to the workshop we only

briefly mention them here:

- W'e use the PolySpace Verifier [45] to check for run-

time errors in Space Flight software, and have found

errors in Mars PathFinder code as well as in code

to run biological experiments on the International

Space Station. PolySpace is a commercially available

tool that uses static analysis techniques to discover

errors.

- In a joint project with the University of Minnesota we

are using JPF2 for test-case generation [35]. Within

the context of this work we are currently extending

JPF2 with the capability to do symbolic execution.

We would like to emphasize that we regard program

analysis as a complementary technique to design anal-

ysis, and hope_d]y the two approaches eventually can

coexist within a unified framework.

References

1..T. BaH, A. Podelski, and S. Rajamani. Boolean and

CartesianAbstractions forModel Checking C Programs.

In Proceedings of TACASOI: Tools and Algorithms for

the Construction and Analysis of Systems, LNCS, Gen-

2. C. Barrett, D. Dill, and J. Levitt. Validity Checking

for Combinations of Theories with Equality. In For-

mal Methods In Computer-Aided Design, volume 1166

• of LNCS, pages 187-201, November 1996.

3. Saddek Bensalem, Yassine Laknech, and Sam Owre. In-

vest: A Tool for the Verification of Invariants. In Alan

Hu and Moshe Vardi, editors, CAV'98: 7th fnterna-

tional Conference on Computer Aided Verification, vol-

ume 1427 of LNCS, pages 505-510, 1998.

4. Tierry Cartel. Modeling and Verification of sC++ Ap-

plications. In Proceedings of TACAS'98: Tools and Al-

gorithms for the Construction and Analysis of Systems,
volume 1384 of Lecture Notes in Computer Science, pages

232-248, Lisbon, Portugal, April 1998. Springer.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model

Checking. The MIT Press, 1999.

Manuel Clavel, Francisco J. Dur£n, Steven Eker, Patrick

Lincoln, Narciso Martf-Oliet, Jos_ Meseguer, and Jos_ F.

Quesada. The Maude system. In Paliath Narendran
and Michael Rusinowitch, editors, Proceedings of the l Oth

International Conference on Rewriting Techniques and

Applications (RTA-99), volume 1631 of Lecture Notes

in Computer Science, pages 240-243, Trento, Italy, July

1999. Springer-Verlag. System Description.

Darren Corer, Eric Engstrom, Nicholas Weininger, John

PenN, and Willem Visser. Using model checking for ver-

ification of partitioning properties in integrated modular

avoinics. In Proceedings of the Digital Avionics Systems

Conference, 2000.
Seth Cohen. Jtrek. Compaq,

http ://wow. compaq, com/j ava/do_m!cad/j trek.
James Corbett, Matthew Dwyer, John Hatcliff, Corina

Pasareanu, Robby, Shown Laubach, and Hongjun Zheng.

Banders : Extracting Finite-state Models from Java

Source Code. In Proceedings of the 22nd International

Conference on Software Engineering, Limeric, Ireland.,

June 2000. ACM Press.

P. Consot and R. Cousot. Abstract Interpretation

Framew6rks. Journal of Logic and Computation,

4(2):511-547, August 1992.

C. Demartini, R. Iosif, and R. Sist. A Deadlock Detection

Tool for Concurrent Java Programs. Software Practice

and Experience, 29(7):577-603, July 1999.

C. Demartini, R. Iosif, and R. Sisto. dSPIN: A Dynamic

Extension of SPIN. In Proceedings of the 6th SPIN Work-

shop, volume 1680 of LNCS, 1999.

Doron Drusinsky. The Temporal Rover and the ATG

Rover. In Klans Havelund, John Penix, and Willem

Visser, editors, SPIN Model Checking and Software Ver-

ification, volume 1885 of Lecture Notes in Computer Sci-

ence, pages 323-330. Springer, 2000.

M. B: Dwyer and J. Hatcliff. Slicing soft-ware for model

construction. In Olivier Danvy, editor, Proceedings of the

1999 A CM Workshop_ on_P_artial Evaluation and Pro g!am

Manipulation (PEPM'99), January. 1999. BRICS Notes

Series NS-99-1.

M. B. D_wer and C. S. PgsS.reanu. Filter-based model

checking of partial systems. In Proceedings of the Sia-th

A CM SIGSOFT Symposium on Foundations of Software

Enginee_ng, November 1998.

M. B. D_yer and C. S. P_sSzeanu. Model check-

in_ generic container im_!emen*_ations, in LNCS 1766.

5.

6.

7.

8.

9.

I0.

ii.

12.

13.

14.

15.

16.

[!

I
!

Klaus Havelund, Willem Visser: Program Model Checking as a New Trend
13

Generic Programming--Proceedings of a Dagstuhl Sem-

inar, 1998.

17. Matthew Dwyer, John Hatcliff, Roby Joehanes, Shawn

Laubach, Corina Pasareanu, Robby, Willem Visser, and

Hongjun Zheng. Tool-supported Program Abstraction
for Finite-state Verification. In Proceedings of the 23rd

Inter'national Conference on Software Engineering (to

appear), Toronto, Cananda., May 2001. ACM Press.

18. Dimitra Giannakopoulou and Klaus Havelund.

Automata-Based Verification of Temporal Properties on

Running Programs. In Proceedings, International Con-

ference on Automated Sbftware Engineering (ASE'01),

pages 412-416. Institute of Electrical and Electronics

Engineers, 2001. Coronado Island, California.

19. Dimitra Giannakopoulouand and Flavio Lerda. From

States to Transitions: Improving translation of LTL for-

mulae to Biichi automata. In Proceedings of the 22nd

IFTP WG 6.1 International Conference on Formal Tech-

niques .for Networked and Distributed Systems (FORTE

2002), Lecture Notes in Computer Science, Houston,

Texas, 2002. Springer.

20. P. Godefroid. Model Checking for Programming Lan-

guages using VeriSoft. In Proceedings of the 2_th A CM

Symposium on Principles of Programming Languages,

pages 174-186, Paris, January 1997.
21. S. Graf and H. Saidi. Construction of Abstract State

Graphs with PVS. In CAV '97: 5th International Con-

ference on Computer Aided Verification, volume 1254 of

LNCS, 1997.

22. Alex Groce and Willem Visser. Model checking java pro-

grams using structural heuristics. In Proceedings of the

2002 International Symposium on Software Testing and

Analysis (ISSTAj. ACM Press, july 2002.

23. Jerry Harrow. Runtime Checking of Multithreaded Ap-

plications with Visual Threads. In KIaus Havelund, John

Penix, and Witlem Visser, editors, SPIN Model Checking

and Software Verification, volume 1885 of Lecture Notes

in Computer Science, pages 331-342. Springer, 2000.

24. J. Hatcliff, J.C. Corbett, M.B. Dwyer, S. Sokolowstd, and

H. Zheng. A Formal Study of Slicing for Multi-threaded

Programs with JVM Concurrency Primitives. In Proc.

of the 1999 Int. Symposium on Static Analysis, 1999.

25. K. Havelund, K. G. Larsen, and A. Skou. Formal Ver-

ification of an Audio/Video Power Controller using the

ReM-Time Model Checker UPPA_A_L. In 5th Int. AMAST

Workshop on Real-Time and Probabilistie Systems, num-
ber 1601 in Lecture Notes in Computer Science. Springer-

Verlag, May 1999. Bamberg, Germany.

26. K. Havelund, A. Skou, K. G. Larsen, and K. Lund. For-

mal Modeling and Analysis of an Audio/Video Protocol:

An Industrial Case Study Using UPPA_AL. In Proceed-

ings of the 18th IEEE Real-Time Systems Symposium,

pages 2-13, Dec 1997. San Francisco, Caiifornia, USA.

27. Klaus Havelund. Using R__un_time An_alys_is to Gui_d_e

Model Checking of Java Programs. In Klaus Havelund,

John Penix, and Willem Visser, editors, SPIN Model

Checking and Software Verification, volume 1885 of

Lecture Notes in Computer Science, pages 245-264.

Springer, 2000.
28. Klaus Havelund, Michael R. Lowry., SeungJoon Park,

Charles Pecheur, John Penix, Willem Visser, and John L.

White. Formal .Amalvsis of the Remote A[ent Before and

After Flight. In Proceedings of the 5th NASA Langley

Formal Methods Workshop, June 2000.

29. Klaus Havelund, Michael R. Lowry, and John Penix. For-

mal Analysis of a Space Craft Controller using SPIN.
IEEE Transactions on Software Engineerin9, 27(8):749-

765, August 2001. An earlier version occurred in the Pro-

ceedings of the 4th SPIN workshop, 1998, Paris, France.
30. Klaus Havelund and Thomas Pressburger. Model Check-

ing Java Programs 'using Java PathFinder. Interna-

tional Journal on Software Tools for Technology Trans-

fer, 2(4):366-381, April 2000. Special issue of STTT con-

taining, selected submissions to the 4th SPIN workshop,.

Paris, France, 1998.

31. Klaus Havelund and Grigore Ro_u. Monitoring Java Pro-

grams with Java PathExplorer. In Klaus Havelund and

Grigore Ro_u, editors, Proceedings of the First Interna-

tional Workshop on Runtime Verification (RV'01), vol-

ume 55 of Electronic Notes in Theoretical Computer Sci-

ence, pages 97-114, Paris, France, July 2001. Elsevier

Science.
32. Klaus Havelund and Grigore Ro_u. Monitoring Programs

using Rewriting. In Proceedings, International Con-

ference on Automated Software Engineering (ASE'01),

pages 135-143. Institute of Electrical and Electronics En-

gineers, 2001. Coronado Island, California.
33. Klaus Havelund and Grigore Ro_u. Synthesizing moni-

tors for safety, properties. In Tools and Algorithms for

Construction and Analysis of Systems (TA CAS'02), vol-

ume 2280 of Lecture Notes in Computer Science, pages

342-356. Springer, 2002. EASST best paper award at

ETAPS'02.
34. Klaus Havelund and Jens Skakkeb_ek. Applying Model

Checking in Java Verification. In Proceedings of the

6th SPIN Workshop, 1999. In connection with FM99,

Toulouse.
35. M. Heimdahl, S. Rayadurgam, and W. Visser. Specifica-

tion Centered Testing. In Proceedings of the Second In-

ternational Workshop on Automated Program Analysis,

Testing and Verification., Toronto, Canada, May 2001.
36. Gerard J. Holzmann. The Model Checker SPIN. IEEE

2bansactions on Software Engineering, 23(5):279-295,

May 1997. Special issue on Formal Methods in Software

Practice.
37. Gerard J. Holzmann and Margaret H. Smith. A Practical

Method for Verifying Event-Driven Software. In Proceed-

ings of ICSE'99, International Conference on Software

Engineering, Los AngeIes, California, USA, May 1999.

IEEE/ACM.
38. G.J. Holzmann and D. Poled. An Improvement in For-

mal Verification. In Proc. FORTEg_, Berne, Switzerland,

October 1994.

39. Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL

in a Nutshell. Int. Journal on Software Tools for Tech-

nology Transfer, 1(1-2):134-152, October 1997:
40. Insup L_e% S_a_m_path Kannan, Moo njoo K_imj (gleg Sokol-

sky, and Mahesh Viswanathan. Runtime Assurance

Based on Formal Specifications. In Proceedings of the In-

ternational Conference on Parallel and Distributed Pro-

cessing Techniques and Applications, 1999.
41. Flavio Lerda and Willem Visser. Addressing dynamic

issues of program model checking. In Proc. of the 8th In-

ternational SPIN Workshop, volume 2057 of LNCS 205"[.

SDrin_er-Ver!ag, May 2001.

14 Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

42. S. Owre, J. M. Rushby, and N. Shankar. PVS: A pro-

totype verification system. In Proceedings of the lth In-

ternational Conference on Automated Deduction (LNCS

607), 1992.
43. J. Penix, W. Visser, E. Engstrom, A. Larson, and

N. Weininger. Verification of Time Partitioning in

the DEOS Scheduler Kernel. In Proceedings of the

22nd International Conference on Software Engineering,

Limeric, Ireland., June 2000. ACM Press.

44. Amir Pnueli. The Temporal Logic of Programs. In Pro-

ceedings of the 18th fEEE Symposium on Foundations of

Computer Science, pages 46-77, 1977.

45. PolySpace. http ://www. polyspace, com.
46. C. S. P_s_reanu. DEOS kernel: Environment modeling

using LTL assumptions. Technical Report NASA-ARC-

" IC-2000-196, NASA Ames, july 2000.

47. C.S. Pis_reanu, M.B. Dwyer, and W. Visser. Find-

ing feasible counter-examples when model checking ab-
stracted java programs, tn Proceedings of the 7th In-

ternational Conference on Tools and Algorithms/or the

Construction and Analysis of Systems, volume 2031 of

LNCS, 2001.

48. Stefan Savage, Michael Burrows, Greg Nelson, Patrik

Sobalvarro, and Thomas Anderson. Eraser: A Dy-
namic Data Race Detector for Multithreaded Programs.

ACM Transactions on Computer Systems, 15(4):391-

411, November 1997.

49. Microsoft Spec and Check Workshop, 2001. http://

research .microsoft. com/specncheck/.

50. W. Visser, S. Park, and J. Penix. Using Predicate Ab-

straction to Reduce Object-Oriented Programs for Model

Checking. In Proceedings of the 3rd A CM SIGSOFT

Wor£shop on Formal Methods in Software Practice, Au-

gust 2000.
51. W.C. Visser. EI_cient CTL" Model Checking using

Games and Automata. PhD thesis, Manchester Univer-

sity, June 1998.
52. Willem Visser, Klaus Havelund, Guillaume Brat, and

Seung-Joon Park. Model checking programs. In Proc.

of the 15th fEEE International Conference on Auto-

mated Software Engineering, Grenoble, France, Septem-

ber 2000.

